Prof. Arie Zaban

BINA Nanocenter - Head
Prof. Arie Zaban
Guiding the research students: 






Postdoctorate in photophysics and photoelectrochemistry, National Renewable

Energy Laboratory (NREL).

A research on dye sensitized solar cells and organic semiconductors.

(Supervisors: Dr. A. J. Nozik and Dr. B. A. Gregg).



Ph.D. in Electrochemistry, Bar-Ilan University Israel,

Thesis: "Impedance spectroscopy of active metals in polar aprotic solutions".



B.Sc. in Chemistry, Bar-Ilan University Israel,





2015 The Israel Chemical Society Research Excellence Prize
2011 The Israeli Vacuum Society (IVS) Research Excellence Prize


Michael Landau Research Prize in Renewable Energy


The Israel Chemical Society Prize for Outstanding Young Scientist.


Mifal Hapayis Found: Michael Landau Excellent PhD Prize.





69.     Chappel, S.; Grinis, L.; Ofir, A.; Zaban, A., Extending the Current Collector Into the Nanoporous Matrix of Dye Sensitised Electrodes. J. Phys. Chem. B 2005, 109, 1643-1647

70.     Ruhle, S.; Greenshtein, M.; Chen, S. G.; Merson, A.; Pizem, A.; Sukenik, C. S.; Cahen, D.; Zaban, A., Molecular Adjustment of the Electronic Properties of Nanoporous Electrodes in Dye Sensitized Solar Cells. J. Phys. Chem. B. 2005, 109, 18907-18913.

71.     Salvador, P.; Hidalgo, M. G.; Zaban, A.; Bisquert, J., Illumination Intensity Dependence of the Photovoltage in Nanostructured TiO2 Dye-sensitized Solar Cells. J. Phys. Chem. 2005, 109, 15915-15926.

72.     Dittrich, T.; Ofir, A.; Tirosh, S.; Grinis, L.; Zaban, A., Influence of the porosity on diffusion and lifetime in porous TiO2 layers. Appl. Phys. Lett. 2006, 88, 182110.

73.     Fabregat-Santiago, F.; Randriamahazaka, H.; Zaban, A.; Garcia-Canadas, J.; Garcia-Belmonte, G.; Bisquert, J., Chemical capacitance of nanoporous-nanocrystalline TiO2 in a room temperature ionic liquid. Phys. Chem. Chem. Phys. 2006, 8, 1827-1833.

74.     Govindaraji, S.; Nakache, P.; Marks, V.; Pomerantz, Z.; Zaban, A.; Lellouche, J.-P., Novel Carboxylated Pyrrole- and Carbazole-Based Monomers. Synthesis and Electro-Oxidation Features. J. Org. Chem. 2006, 71, 9139-9143.

75.     Ofir, A.; Dittrich, T.; Tirosh, S.; Grinis, L.; Zaban, A., Influence of sintering temperature, pressing and conformal coatings on electron diffusion in electrophoretically deposited porous TiO2. J. Appl. Phys. 2006, 100, 74317.

76.     Tirosh, S.; Dittrich, T.; Ofir, A.; Grinis, L.; Zaban, A., Influence of ordering in porous TiO2 layers on electron diffusion. J. Phys. Chem. B. 2006, 110, 16165 - 16168.

77.     Walker, D.; Chappel, S.; Mahammed, A.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B.; Zaban, A.; Gross, Z., Corrole-sensitized TiO2 solar cells. J. Porphyrins Phthalocyanines 2006, 10, 1259-1262.

78.     Abayev, I.; Zaban, A.; Kytin, V. G.; Danilin, A. A.; Garcia-Belmonte, G.; Bisquert, J., Properties of the electronic density of states in TiO2 nanoparticles surrounded with aqueous electrolyte. J. Solid State Electrochem. 2007, 11, 647-653.

79.     Dressler, D. H.; Landau, A.; Zaban, A.; Mastai, Y., Sub-micrometer polarimetry of chiral surfaces using near-field scanning optical microscopy. Chem. Commun. 2007, 945-947.

80.     Pol, V. G.; Langsam, Y.; Zaban, A., Application of Microwave Superheating for the Synthesis of TiO2 Rods. Langmuir 2007, 23, 211-216.

81.     Pol, V. G.; Zaban, A., Growing TiO2-Based Pillars by Chemisorbed Nanotitania Followed by Annealing. J. Phys. Chem. C. 2007, 111, 14574-14578.

82.     Pomerantz, Z.; Garcia-Belmonte, G.; Joseph, A.; Lellouche, J.-P.; Bisquert, J.; Zaban, A., The Effect of Ion-Polymer Binding on Ionic Diffusion in Dicarbazole-Based Conducting Polymers. Electrochem. Acta 2007, 52, 6841-6847

83.     Cahen, D.; Frey, G. L.; Zaban, A., Human resources for future alternative-energy research. Nature Materials 2008, 7 (2), 93-93.

84.     Dor, S.; Dittrich, T.; Ofir, A.; Grinis, L.; Zaban, A., Post-pressing dependence of the effective electron diffusion coefficient in electrophoretically prepared nanoporous ZnO and TiO2 films. J. Mater. Res. 2008, 23, 975-980.

85.     Grinis, L.; Dor, S.; Ofir, A.; Zaban, A., Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells. J. Photochem.Photobiol. A: Chemistry 2008, 198, 52–59.

86.     Grinis, L.; Ofir, A.; Dor, S.; Yahav, S.; Zaban, A., Collector-shell mesoporous electrodes for dye sensitized solar cells. Israel J. Chem. 2008, 48, 269–275.

87.     Lipp, J.; Makarov, C.; Khalfin, R. L.; Shuster, M.; Berenstein, L.; Melamed, O.; Odani, A.; Zaban, A.; Cohen, Y., Evaluation of Nanoparticle Dispersion in Polypropylene by Small-Angle X-Ray Scattering. J. Appl. Polymer Sci. 2008, 109, 350-354.

88.     Ofir, A.; Dor, S.; Grinis, L.; Zaban, A.; Dittrich, T.; Bisquert, J., Porosity dependence of electron percolation in nanoporous TiO2 layers. J. Chem. Phys. 2008, 128, 64703.

89.     Ofir, A.; Grinis, L.; Zaban, A., Direct measurement of the recombination losses via the transparent conductive substrate in dye sensitized solar cells. J. Phys. Chem. C. 2008, 112, 2779-2783.

90.     Pol, V. G.; Koren, E.; Zaban, A., Fabrication of Continuous Conducting Gold Wires by Electrospinning. Chem. Mater. 2008, 20, 3055-3062.

91.     Pomerantz, Z.; Levi1, M. D.; Salitra, G.; Demadrille, R.; Fisyuk, A.; Zaban, A.; Aurbach, D.; Pron, A., UV-Vis-NIR spectroelectrochemical and in-situ conductance studies of unusual stability of n and p-doped poly(dimethyldioctylquaterthiophene -alt-oxadiazole) under high cathodic and anodic polarizations. Phys. Chem. Chem. Phys. 2008, 10, 1032-1042.

92.     Pomerantz, Z.; Zaban, A.; Ghosh, S.; Lellouche, J.-P.; Garcia-Belmonte, G.; Bisquert, J., Capacitance, spectroelectrochemistry and conductivity of polarons and bipolarons in a polydicarbazole based conducting polymer. Electranal. Chem. 2008, 614, 49-60.

93.     Ruhle, S.; Greenwald, S.; Koren, E.; Zaban, A., Optical Waveguide Enhanced Photovoltaics. Optics Express 2008, 16, 21801-21806.

94.     Zhang, J.; Zaban, A., Efficiency Enhancement in Dye-Sensitized Solar Cells by In Situ Passivation of the Sensitized Nanoporous Electrode with Li2CO3 Electrochim. Acta 2008, 53, 5670-5674.

95.     Bar, G.; Strum, G.; R.Gvishi; Larina, N.; Lokshin, V.; Khodorkovsky, V.; Grinis, L.; Zaban, A.; Kiryuschev, I., A new approach for design of organic electrochromic devices with inter-digitated electrode structure. Solar Energy Materials & Solar Cells 2009, 93, 2118-2124.

96.     Dor, S.; Grinis, L.; Ruhle, S.; Zaban, A., Electrochemistry in mesoporous electrods: The influence of Nano porosity on the chemical potential of the electrolyte in dye sensitized solar cells. J. Phys. Chem. C 2009, 113, 2022-2027.

97.     Dor, S.; Rühle, S.; Ofir, A.; Adler, M.; Grinis, L.; Zaban, A., The Influence of Suspension Composition and Deposition Mode on the Electrophoretic Deposition of TiO2 Nanoparticle Agglomerates Colloids and Surfaces A. 2009, 342, 70-75.

98.     Rühle, S.; Segal, A.; Vilan, A.; Kurtz, S. R.; Grinis, L.; Zaban, A.; Lubomirsky, I.; Cahen, D., A two junction, four terminal photovoltaic device for enhanced light to electric power conversion using a low cost dichroic mirror. J. Renewable and Sustainable Energ. 2009, 1, 013106-1-013106-6.

99.     Shalom, M.; Dor, S.; Rühle, S.; Grinis, L.; Zaban, A., Core / CdS Quantum Dot / Shell Mesoporous Solar Cells with Improved Stability and Efficiency Using an Amorphous TiO2 Coating. J. Phys. Chem. C 2009, 113, 3895-3898.

100.   Shalom, M.; Ruhle, S.; Hod, I.; Yahav, S.; Zaban, A., Energy Level Alignment in CdS Quantum Dot Sensitized Solar Cells Using Molecular Dipoles. J. Am. Chem. Soc. 2009, 131 (29), 9876-9877.

101.   Barea, E. M.; Shalom, M.; Giménez, S.; Hod, I.; Mora-Seró, I.; Zaban, A.; Bisquert, J., Design of Injection and Recombination in Quantum Dot Sensitized Solar Cells. J. Am. Chem. Soc. 2010, 132  6834-6839.

102.   Buhbut, S.; Itzhakov, S.; Tauber, E.; Shalom, M.; Hod, I.; Geiger, T.; Garini, Y.; Oron, D.; Zaban, A., Built-in Quantum Dot Antennas in Dye-Sensitized Solar Cells. ACS Nano 2010, 4, 1293–1298.

103.   Buhbut, S.; Rudnitsky, A.; Rosenbluh, M.; Zaban, A.; Zalevsky, Z., Polarizing and spectrally selective photonic device based upon dielectric nanorods. Microelectronic Engineering 2010, 87, 1319-1322.

104.   Genish, I.; Irzh, A.; Gedanken, A.; Anderson, A.; Zaban, A.; Klein, L., Coating dielectric substrates by plasma-reduction of metallic ions in solvents. Surface & Coatings Technology 2010, 204, 1347-1352.

105.   Grinis, L.; Kotlyar, S.; Rühle, S.; Grinblat, J.; Zaban, A., Conformal Nano-Sized Inorganic Coatings on Mesoporous TiO2 Films for Low ‎Temperature Dye-Sensitized Solar Cell Fabrication. Adv. Funct. Mater. 2010, 20, 282-288.

106.   Hod, I.; Shalom, M.; Tachan, Z.; Rühle, S.; Zaban, A., SrTiO3 Recombination Inhibiting Barrier Layer for Type II Dye Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 10015-10018.

107.   Plotkin, M.; Hod, I.; Zaban, A.; Boden, S. A.; Bagnall, D. M.; Galushko, D.; Bergman, D. J., Solar energy harvesting in the epicuticle of the oriental hornet (Vespa orientalis). Naturwissenschaften 2010, 97 (12), 1067-1076.

108.   Rühle, S.; Shalom, M.; Zaban, A., Quantum-dot-sensitized solar cells. ChemPhysChem 2010, 11, 2290 - 2304.

109.   Salant, A.; Shalom, M.; Hod, I.; Faust, A.; Zaban, A.; Banin, U., Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition. ACS Nano 2010, 4, 5962-5968.

110.   Shalom, M.; Albero, J.; Tachan, Z.; Martínez-Ferrero, E.; Zaban, A.; Palomares, E., Quantum Dot-Dye bi-Layer Sensitized Solar Cells: Breaking the limits imposed by the low absorbance of dye monolayers. J. Phys. Chem. Lett. 2010, 1, 1134–1138.

111.   Tachan, Z.; Rühle, S.; Zaban, A., Dye-sensitized solar tubes: A new solar cell design for efficient current collection and improved cell sealing. Solar Energ. Mater. Solar Cells 2010, 94, 317-322.

112.   Bar, G.; Larina, N.; Grinis, L.; Lokshin, V.; Gvishi, R.; Kiryuschev, I.; Zaban, A.; Khodorkovsky, V., RGB Organic Electrochromic Cells. Solar Energy Materials and Solar Cells 2011.

113.   Buhbut, S.; Itzhakov, S.; Oron, D.; Zaban, A., Quantum Dot Antennas for Photo-electrochemical Solar Cells. J. Phys. Chem. Lett. 2011, 2

 (15), 1917–1924

114.   Greenwald, S.; Ruhle, S.; Shalom, M.; Yahav, S.; .Zaban, A., Unpredicted electron injection in CdS/CdSe quantum dot sensitized ZrO2 solar cells. Physical Chemistry Chemical Physics 2011, 13 (43), 19302 - 19306

115.   Hod, I.; Gonzalez-Pedro, V.; Tachan, Z.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J.; Zaban, A., Dye versus Quantum Dots in Sensitized Solar Cells: Participation of Quantum Dot Absorber in the Recombination Process. J. Phys. Chem. Lett. 2011, 2 (24), 3032-3035.

116.   Hod, I.; Tachan, Z.; Shalom, M.; Zaban, A., Internal Photoreference Electrode: A Powerful Characterization Method for Photoelectrochemical Quantum Dot Sensitized Solar Cells. J .Phys. Chem. Lett. 2011, 2, 1032-1037.

117.   Itzhakov, S.; Buhbut, S.; Tauber, E.; Geiger, T.; Zaban, A.; Oron, D., Design principles of FRET-based dye-sensitized solar cells with buried quantum dot donors. Adv. Energy Mater. 2011, 1 (4), 626-633.

118.   Shalom, M.; Hod, I.; Tachan, Z.; Buhbut, S.; Tirosh, S.; Zaban, A., Quantum dot based anode and cathode for high voltage tandem photo -electrochemical solar cell. Energy & Dynamic Environmental Science 2011, 4, 1874-1879.

119.   Shalom, M.; Tachan, Z.; Bouhadana, Y.; Barad, H. N.; Zaban, A., Illumination Intensity Dependent Electronic Properties in Quantum Dots Sensitized Solar Cells. J. Phys. Chem. Lett. 2011, 2 (16), 1998-2003.

120.   Tachan, Z.; Shalom, M.; Hod, I.; Ruhle, S.; Tirosh, S.; Zaban, A., PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells. J. Phys. Chem. C 2011, 115 (13), 6162-6166.

121.   Yahav, S. R., Sven; Greenwald, Shlomit; Barad, Hannah-Noa; Shalom, Menny; Zaban, Arie, Efficiency Enhancement of Dye-Sensitized Solar Cells using a La Modified TiCl4 Treatment of Mesoporous TiO2 Electrodes. J. Phys. Chem.  C 2011, 115 (43), 21481–21486.

122.   Elbaz, D.; Buhbut, S.; Kupfer, B. Z.; Zaban, A.; Zalevsky, Z., Optical fiber based radial polarizer. Opt. Commun. 2012, 285 (10-11), 2746-2749.

123.   Rühle, S.; Anderson, A.; Barad, H. N.; Kupfer, B.; Bouhadana, Y.; Rosh-Hodesh, E.; Zaban, A., .All Oxide Photovoltaics. J. Phys. Chem. Lett. 2012, 3, 3755-3764.

124.   Ruhle, S.; Yahav, S.; Greenwald, S.; Zaban, A., The Importance of Recombination at the TCO / Electrolyte Interface for High Efficiency Quantum Dot Sensitized Solar Cells. J. Phys. Chem. C 2012,  (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), Ahead of Print.

125.   Salant, A.; Shalom, M.; Tachan, Z.; Buhbut, S.; Zaban, A.; Banin, U., Quantum Rod-Sensitized Solar Cell: Nanocrystal Shape Effect on the Photovoltaic Properties. Nano Lett. 2012, 12 (4), 2095-2100.

126.   Shahmoon, A.; Elbaz, D.; Buhbut, S.; Kupfer, B. Z.; Zaban, A.; Zalevsky, Z., Nanorods coated fiber for generating enhanced radially polarized field. Microelectronic Engineering 2012, 98, 414-418.

127.   Shalom, M.; Buhbut, S.; Tirosh, S.; Zaban, A., Design Rules for High-Efficiency Quantum-Dot-Sensitized Solar Cells: A Multilayer Approach. J. Phys. Chem. Lett. 2012, 3 (Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 2436-2441.

128.   Buhbut, S.; Clifford, J. N.; Kosa, M.; Anderson, A. Y.; Shalom, M.; Major, D. T.; Palomares, E.; Zaban, A., Controlling dye aggregation, injection energetics and catalytic recombination in organic sensitizer based dye cells using a single electrolyte additive. Energy Environ. Sci. 2013, 6 (10), 3046-3053.

129.   Buhbut, S.; Itzhakov, S.; Hod, I.; Oron, D.; Zaban, A., Photo-Induced Dipoles: A New Method to Convert Photons into Photovoltage in Quantum Dot Sensitized Solar Cells. Nano Lett. 2013, 13, 4456−4461.

130.   C. Lang, S. R., A. Y. Anderson, A. Zaban, P. Statham, S. Burgess, Non-Destructive Measurement of a Combinatorial Materials Library for All-Oxide Solar Cells. Microsc. Microanal 2013, 19, 1872-1873.

131.   Gottesman, R.; Tirosh, S.; Barad, H.-N.; Zaban, A., Direct Imaging of the Recombination/Reduction Sites in Porous TiO2 Electrodes. J. Phys. Chem. Lett. 2013, 4, 2822−2828.

132.   Hod, I.; Tachan, Z.; Shalom, M.; Zaban, A., Characterization and control of the electronic properties of a NiO based dye sensitized photocathode. Phys. Chem. Chem. Phys. 2013, 15 (17), 6339-6343.

133.   Pfeifer, V.; Erhart, P.; Li, S.; Rachut, K.; Morasch, J.; Brotz, J.; Reckers, P.; Mayer, T.; Ruhle, S.; Zaban, A.; Mora-Sero, I.; Bisquert, J.; Jaegermann, W.; Klein, A., Energy Band Alignment Between Anatase and Rutile TiO2. J. Phys. Chem. Lett. 2013, 4 (23), 4182–4187.

134.   Rudnitsky, A.; Zaban, A.; Zalevsky, Z., Passive high ratio sunlight concentration configurations. Journal of the European Optical Society-Rapid Publications 2013, 8.

135.   Tachan, Z.; Hod, I.; Shalom, M.; Grinis, L.; Zaban, A., The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15 (11), 3841-3845.

136.   Anderson, A. Y.; Bouhadana, Y.; Barad, H.-N.; Kupfer, B.; Rosh-Hodesh, E.; Aviv, H.; Tischler, Y. R.; Ruhle, S.; Zaban, A., Quantum Efficiency and Bandgap Analysis for Combinatorial Photovoltaics: Sorting Activity of Cu-O Compounds in All-Oxide Device Libraries. ACS Comb. Sci. 2014, Ahead of Print.

137.   Bertoluzzi, L.; Herraiz-Cardona, I.; Gottesman, R.; Zaban, A.; Bisquert, J., Relaxation of Electron Carriers in the Density of States of Nanocrystalline TiO2. J. Phys. Chem. Lett. 2014, 5 (4), 689-694.

138.   Gottesman, R.; Haltzi, E.; Gouda, L.; Tirosh, S.; Bouhadana, Y.; Zaban, A.; Mosconi, E.; De Angelis, F., Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions. J. Phys. Chem. Lett. 2014, Ahead of Print.

139.   Hod, I.; Zaban, A., Materials and Interfaces in Quantum Dot Sensitized Solar Cells: Challenges, Advances and Prospects. Langmuir 2014, 30 (25), 7264–7273.

140.   Kazes, M.; Buhbut, S.; Itzhakov, S.; Lahad, O.; Zaban, A.; Oron, D., Photophysics of voltage increase by photoinduced dipole layers in sensitized solar cells. J. Phys. Chem. Lett. 2014, 5 (15), 2717-2722.

141.   Ruehle, S.; Barad, H. N.; Bouhadana, Y.; Keller, D. A.; Ginsburg, A.; Shimanovich, K.; Majhi, K.; Lovrincic, R.; Anderson, A. Y.; Zaban, A., Combinatorial solar cell libraries for the investigation of different metal back contacts for TiO2-Cu2O hetero-junction solar cells. Phys. Chem. Chem. Phys. 2014, 16 (15), 7066-7073.

142.   Shimanovich, K.; Bouhadana, Y.; Keller, D. A.; Ruhle, S.; Anderson, A. Y.; Zaban, A., Four-point probe electrical resistivity scanning system for large area conductivity and activation energy mapping. Rev. Sci. Instrum. 2014, 85 (5), 055103/1-055103/6.

143.   Tachan, Z.; Hod, I.; Zaban, A., The TiO2-Catechol Complex: Coupling Type II Sensitization with Efficient Catalysis of Water Oxidation. Adv. Energy Mater. 2014, 4 (6), n/a.

144.   Keller, D. A.; Ginsburg, A.; Barad, H.-N.; Shimanovich, K.; Bouhadana, Y.; Rosh-Hodesh, E.; Takeuchi, I.; Aviv, H.; Tischler, Y. R.; Anderson, A. Y.; Zaban, A., Utilizing Pulsed Laser Deposition Lateral Inhomogeneity as a Tool in Combinatorial Material Science. ACS Comb. Sci. 2015, 17 (4), 209-216.

145.   Kupfer, B.; Majhi, K.; Keller, D. A.; Bouhadana, Y.; Ruehle, S.; Barad, H. N.; Anderson, A. Y.; Zaban, A., Thin Film Co3O4/TiO2 Heterojunction Solar Cells. Adv. Energy Mater. 2015, 5 (1), 1401007/1-1401007/5.

146.   Pavan, M.; Ruhle, S.; Ginsburg, A.; Keller, D. A.; Barad, H.-N.; Sberna, P. M.; Nunes, D.; Martins, R.; Anderson, A. Y.; Zaban, A.; Fortunato, E., TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis. Sol. Energy Mater. Sol. Cells 2015, 132, 549-556.

147.   Yosipof, A.; Nahum, O. E.; Anderson, A. Y.; Barad, H.-N.; Zaban, A.; Senderowitz, H., Data Mining and Machine Learning Tools for Combinatorial Material Science of All-Oxide Photovoltaic Cells. Mol. Inf. 2015, Ahead of Print.


Sustainable  energy, Chemistry


·         Solar energy.

·         Combinatorial Materials Science for Next Generation Photovoltaics.

·         Nanoporous wide band-gap semiconductor electrodes, single material and core-shell  systems.

·         Nanosize wide band-gap semiconductors with controlled properties via surface control.

·         Low cost spectral splitting for multi-bandgap photovoltaics.

·         Interdigitated organic/inorganic nanosize layers towards the development of low cost “plastic” solar cells and smart polymers.

·          Dye Sensitized Solar Cells (DSSC).