

Lust update: 8/3/21

Name and Course Number: Surface Analysis- Theory and application 84-857-01 Dr. Yossef Gofer

Course type:

Year of Study: 2022 Semester: 2 Hours: 2

Course website:

Day & Time: Sunday 10:00-12:00

A. Course Objectives:

The course provides the students with theoretical and semi-practical knowledge in the four most important surface analysis methods today: XPS, AES, SIMS and RBS

B. Course Contents:

After a brief introduction to the chemistry of surfaces, the students receive a comprehensive overview of the range of analytical methods for chemical and physical-chemical analysis of surfaces and thin layers. Then I elaborate on indepth study of the four leading methods of surface analysis: XPS, AES, SIMS and RBS. We will study the main issues pertaining to each of the individual methods in terms of the theory and the physical phenomena that underlie the method. The lectures give also an overview of the various parts of the instruments, followed by a thorough discussion of spectra interpretation using several representative examples. At the end of each section we elaborate on special uses as well as of selection and preparation of samples for analysis.

Lessons:

Detailed teaching program for all classes:

Lesson no.	Subject of lesson	Required reading	Comments
1	Introduction to chemistry and surface analysis. Review of modern qualitative methods for surface analysis		
2	A review of quantitative modern methods for surface analysis Review of modern methods for measuring physical parameters on surfaces A review of modern high quality surface imaging methods. The importance of surface analysis to the world of nanotechnology and materials science		
3	XPS: Introduction and Theory. "Ultra-High" vacuum systems The XPS spectrometer. Qualitative XPS analysis Peak shape and width. Initial and final state effects.		
4	Energy resolution in XPS Background emission XP Auger line shapes Charging effects Base-line correction Peak fitting Signal smoothing UPS XPS XPS The Relative Sensitivity Factor Accuracy and repeatability Depth profiling Angle resolved XPS Sputtering		
5	Scanning XPS (chemical mapping) sample requirements and sample preparation UHV incompatible elements (for X-ray exposure and sputtering)		

	Some examples for XPS analysis: case
	studies
6	Short visit at the XPS Lab
6	AES theory
	Auger Electrons production The chang of the AES apportum
	The shape of the AES spectrum Electrons penetration depth and electron
	escape depth
	Relative probability of AES emission
	AES Instrumentation
	7.20 modumentation
7	Qualitative AES analysis
	Spectral interpretation
	The AES emissions nomenclature
	Chemical shift in AES.
	final state effects
8	AES line intensity
	Depth profiling
	Scanning AES: chemical mapping
	Sample requirements
	Sample preparation.
	AES sample damage.
9	SIMS Theory
	Ion beam sputtering: The generation of
	secondary ions
	Fragmentation rules
	TOF-SIMS
	Conventional (dynamic) SIMS Chemical imaging with SIMS
	Secondary ions energy distribution
	The secondary ions:
	Energy distribution
	Secondary Ion Yields: Elemental Effects
	Secondary Ion Yields: Primary Beam
	Effects
10	SIMS instrumentation
	The primary ion beam source
	Scanning methods
	The analyzer
	The detector
	Spectral analysis:
	Qualitative analysis
	Quantitative analysis
	Relative sensitivity factor
	Detection limit
11	Databases Maga Interferences
11	Mass Interferences Donth profiling and donth resolution
	Depth profiling and depth resolution
	Bulk analysis

	Sample preparation and sample requirements Which kind of samples can really be analyzed by SIMS Sample vacuum compatibility Charging effects Sample damage Vacuum and recontamination Chemical imaging: mapping Ion Beam Analysis: Theory. Ratherford Backscattering Spectroscopy: Spectra interpretation- Kinematics Scattering Cross Sections	
	Stopping Power	
12	Spectral interpretation Layer Thickness Measurements Elemental Ratios Elemental Concentrations RBS Instrumentation Tandem Accelerators Beam Line and Tank Stripper Elements Source of Negative Helium Ions Particle optics: Focusing Elements Sample Chamber The detector Sample preparations Special effects and methods in IBA. Straggling	
13	Channeling Bragg's Rule Density Effects Related techniques and phenomena Inelastic backscattering scattering Elastic Recoil Detection Analysis	
14	Particle (Proton) induced X-ray Emission spectroscopy Particle Induces Gamma-Ray Emission spectroscopy Nuclear Reaction Analysis Ion implementation	

C. Course requirements:

Prerequisites: BSc in chemistry.

Debts / Requirements / Assignments: Exam

Components of the final grade (passing number / grade): Exam

D. Bibliography (recommended):

- General surface Analysis:
 - Surface analysis: the principal techniques / edited by John
 C. Vickerman: very general and shallow. Good just for browsing
 - Modern techniques of surface science / D.P. Woodruff & T.A. Delchar. Good just for browsing

XPS and EIS

- Practical Surface Analysis: By Auger and X-Ray Photoelectron Spectroscopy AES / D. Briggs. Very thorough book. Not available in BIU
- http://srdata.nist.gov/xps/ : the most thorough and reliable database for XPS
- http://www.uksaf.org/home.html: good source for general data, especially the tutorials.
- http://www.eaglabs.com/en-S/references/tutorial/augtheo/caiatheo.html

0

SIMS

- Secondary Ion Mass Spectroscopy of Solid Surfaces / V.
 Cherepin; Very thorough book. Not available in BIU
- Solid Surfaces, Interfaces and Thin Films / H. (Hans) Lüth;
 Very thorough book. Not available in BIU.
- http://www.eaglabs.com/en-US/references/tutorial/simstheo/caistheo.html

0

RBS

http://www.eaglabs.com/en S/references/tutorial/rbstheo/cairtheo.html

Mandatory material for tests: